Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Front Immunol ; 13: 833310, 2022.
Article in English | MEDLINE | ID: covidwho-1902989

ABSTRACT

Immune checkpoints (ICPs) consist of paired receptor-ligand molecules that exert inhibitory or stimulatory effects on immune defense, surveillance, regulation, and self-tolerance. ICPs exist in both membrane and soluble forms in vivo and in vitro. Imbalances between inhibitory and stimulatory membrane-bound ICPs (mICPs) in malignant cells and immune cells in the tumor immune microenvironment (TIME) have been well documented. Blockades of inhibitory mICPs have emerged as an immense breakthrough in cancer therapeutics. However, the origin, structure, production regulation, and biological significance of soluble ICPs (sICPs) in health and disease largely remains elusive. Soluble ICPs can be generated through either alternative mRNA splicing and secretion or protease-mediated shedding from mICPs. Since sICPs are found in the bloodstream, they likely form a circulating immune regulatory system. In fact, there is increasing evidence that sICPs exhibit biological functions including (1) regulation of antibacterial immunity, (2) interaction with their mICP compartments to positively or negatively regulate immune responses, and (3) competition with their mICP compartments for binding to the ICP blocking antibodies, thereby reducing the efficacy of ICP blockade therapies. Here, we summarize current data of sICPs in cancer and infectious diseases. We particularly focus on sICPs in COVID-19 and HIV infection as they are the two ongoing global pandemics and have created the world's most serious public health challenges. A "storm" of sICPs occurs in the peripheral circulation of COVID-19 patients and is associated with the severity of COVID-19. Similarly, sICPs are highly dysregulated in people living with HIV (PLHIV) and some sICPs remain dysregulated in PLHIV on antiretroviral therapy (ART), indicating these sICPs may serve as biomarkers of incomplete immune reconstitution in PLHIV on ART. We reveal that HIV infection in the setting of alcohol misuse exacerbates sICP dysregulation as PLHIV with heavy alcohol consumption have significantly elevated plasma levels of many sICPs. Thus, both stimulatory and inhibitory sICPs are present in the bloodstream of healthy people and their balance can be disrupted under pathophysiological conditions such as cancer, COVID-19, HIV infection, and alcohol misuse. There is an urgent need to study the role of sICPs in immune regulation in health and disease.


Subject(s)
Alcoholism/immunology , COVID-19/immunology , HIV Infections/immunology , HIV-1/physiology , Neoplasms/immunology , SARS-CoV-2/physiology , Biomarkers/blood , Humans , Immune Checkpoint Proteins/blood , Severity of Illness Index
2.
Sci Rep ; 12(1): 3954, 2022 03 10.
Article in English | MEDLINE | ID: covidwho-1740473

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) results in a variety of clinical symptoms ranging from no or mild to severe disease. Currently, there are multiple postulated mechanisms that may push a moderate to severe disease into a critical state. Human serum contains abundant evidence of the immune status following infection. Cytokines, chemokines, and antibodies can be assayed to determine the extent to which a patient responded to a pathogen. We examined serum and plasma from a cohort of patients infected with SARS-CoV-2 early in the pandemic and compared them to negative-control sera. Cytokine and chemokine concentrations varied depending on the severity of infection, and antibody responses were significantly increased in severe cases compared to mild to moderate infections. Neutralization data revealed that patients with high titers against an early 2020 SARS-CoV-2 isolate had detectable but limited neutralizing antibodies against the emerging SARS-CoV-2 Alpha, Beta and Delta variants. This study highlights the potential of re-infection for recovered COVID-19 patients.


Subject(s)
Broadly Neutralizing Antibodies/immunology , COVID-19/virology , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/immunology , Chemokines/blood , Cytokines/blood , Female , Humans , Male , Middle Aged , Patient Acuity , Young Adult
3.
J Infect Dis ; 224(1): 60-69, 2021 07 02.
Article in English | MEDLINE | ID: covidwho-1196995

ABSTRACT

BACKGROUND: Systemic vascular injury occurs in coronavirus disease 2019 (COVID-19) patients; however, the underlying mechanisms remain unknown. METHODS: To clarify the role of inflammatory factors in COVID-19 vascular injury, we used a multiplex immunoassay to profile 65 inflammatory cytokines/chemokines/growth factors in plasma samples from 24 hospitalized (severe/critical) COVID-19 patients, 14 mild/moderate cases, and 13 healthy controls (HCs). RESULTS: COVID-19 patients had significantly higher plasma levels of 20 analytes than HCs. Surprisingly, only 1 cytokine, macrophage migration inhibitory factor (MIF), was among these altered analytes, while the rest were chemokines/growth factors. Additionally, only matrix metalloproteinase-1 (MMP-1) and vascular endothelial growth factor A (VEGF-A) were significantly elevated in hospitalized COVID-19 patients when compared to mild/moderate cases. We further studied MMP-1 enzymatic activity and multiple endothelial cell (EC) activation markers (soluble forms of CD146, intercellular adhesion molecule 1 [ICAM-1], and vascular cell adhesion molecule 1 [VCAM-1]) and found that they were highly dysregulated in COVID-19 patients. CONCLUSIONS: COVID-19 patients have a unique inflammatory profile, and excessive MMP-1 and hyperactivation of ECs are associated with the severity of COVID-19.


Subject(s)
COVID-19/metabolism , COVID-19/virology , Endothelial Cells/metabolism , Host-Pathogen Interactions , Matrix Metalloproteinase 1/metabolism , SARS-CoV-2 , Adult , Aged , Biomarkers , COVID-19/blood , COVID-19/diagnosis , Cytokines/metabolism , Enzyme-Linked Immunosorbent Assay , Female , Hospitalization , Humans , Inflammation Mediators/metabolism , Male , Matrix Metalloproteinase 1/blood , Middle Aged , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL